Fuel Pharma Growth with Cutting-Edge Data Science & AI in Drug Discovery

Mitigate Data Challenges and Attain Better Patient Outcomes

Or fill up the form provided below to hire dedicated AI/ML solution developers

Our Clients

TrackTraceRX
APTARA

Our Clients

TrackTraceRX
APTARA

Navigate Pharma Data Availability Challenges Like a Pro

The pharmaceutical industry comes across significant data availability challenges because of siloed and fragmented sources of data, data privacy concerns, and regulatory constraints. Genomic data, real-word evidence, and clinical trial data are stored often in disparate systems, which interrupts seamless integration.

Data sharing across institutions and borders is often challenging while abiding by regulatory requirements, like GDPR and HIPAA. Moreover, lack of standardized data formats and proprietary data ownership hinder interoperability. These issues prevent making the most of AI and big data, delaying the drug discovery and development process. We are experts in data science and artificial intelligence in pharmaceutical industry, offering advanced data integration technologies, harmonized standards, and collaborative frameworks to mitigate these challenges.

Our Favourite Tech Stacks

scikit-learn open-source machine learning library
Transformers - deep learning architecture
PyTorch - machine learning library - orch library
Amazon Bedrock - high-performing foundation models
aws Sagemaker -  cloud-based machine-learning platform
Microsoft's Azure - AI services - integrate OpenAI models
Vertex AI - machine learning models - real-time inference and predictions
Python -  high-level, general-purpose programming language
OpenCV - library - real-time computer vision
Keras - open-source library
TensorFlow - open-source software library

What Problems We Solve

Data Heterogeneity and Integration

Data in the life sciences industry is highly heterogeneous, originating from diverse sources such as electronic health records, clinical trials, medical imaging, and genomic sequences. It’s challenging to integrate these different data types into a cohesive dataset for analysis by AI.

How we help

To enable the integration of diverse datasets, we implement standards such as the Fast Healthcare Interoperability Resources (FHIR). Furthermore, we employ platforms specializing in integrating and harmonizing clinical and multi-omics data for streamlining the process. We leverage AI tools, which can natively handle various data types, such as tools using deep learning for handling multimodal data.

Data Privacy and Security

Life sciences data, patient data in particular, often consists of sensitive personal information. Regulations like GDPR in Europe and HIPAA in the U.S. establish strict requirements on how such data can be stored, processed, and shared. This makes it difficult to access large, diverse datasets.

How we help

We employ federated learning, which allows the training of AI models across various decentralized data sources without the need to transfer the data to a central server. It facilitates training models on sensitive data, while maintaining the privacy of the data itself. Moreover, we use techniques such as the creation of synthetic datasets or data anonymization to protect individual identities while still supplying valuable data for the training of AI.

Our Capabilities in Data Science & AI for Pharmaceutical Industry

Illustration of custom AI models used in life sciences and pharma industries for clinical data analysis and personalized medicine.

Building Custom AI Models

We have extensive experience in building custom AI models tailored for the life sciences and pharma industries. In this domain, our expertise ranges over clinical data analysis, proteomics, and genomics, facilitating precise biomarker discovery, personalized medicine, and drug development. Using NLP and machine learning, we provide you with actionable insights to improve patient outcomes and fast track innovation.

Diagram showing custom Large Language Models (LLMs) for regulatory compliance and clinical trial analysis in the pharma industry.

Building Custom LLM Models

Our team is proficient in building custom Large Language Models (LLMs) for the life sciences and pharma industries. Our area of expertise includes regulatory compliance, clinical trial analysis, optimizing for jobs like drug discovery, and model training on specialized biomedical texts. By integrating advanced NLP techniques with domain-specific knowledge, we come up with cutting-edge solutions, which propel innovation and improve decision-making in healthcare.

Flowchart of DataOps and MLOps processes for managing biomedical datasets and automating model development in life sciences.

Managing DataOps & MLOps

Over the years, we have achieved expertise in managing DataOps and MLOps for the life sciences and pharma industry. We design solutions to streamline data pipelines, which ensures flawless integration, governance, and transformation of complex biomedical datasets. Deploying scalable MLOps frameworks, we help to automate model development, monitoring, and deployment. This enables rapid iteration and compliance with the industry standards.

Graphic depicting the generation of synthetic biomedical data and real-world data enhancement for clinical trials and pharma sales forecasting.

Generating Data

Our practical experience in running clinical trials and conducting life sciences research has equipped us with the expertise to generate high-quality data tailored for life sciences and pharma. Our expertise ranges from developing synthetic biomedical datasets, improving real-world data with advanced AI techniques to simulating clinical trials. By ensuring diversity, accuracy, and compliance of data, we empower researchers and companies to fuel innovation in healthcare, improve patient outcomes, and accelerate drug discovery. Furthermore, our data solutions facilitate pharma sales projection, allowing strategic decision-making and more accurate forecasting in a highly competitive market.

Challenges we Solved

Revolutionizing the healthcare industry with custom business solutions
Healthcare
Creating Smooth Operations for the ‘Trial Master’
view case study
Legal analytics solutions
Healthcare
Creating an Innovative Medical Record Keeping Software
view case study
Cloud consulting for real estates
Healthcare
Tackling Pharma Revenue Leakage & Sales Gaps
View Our Insight

What Makes Us Stand Apart?

Graphic illustrating the use of data science to automate compound screening and accelerate drug discovery in pharma R&D.

Improved Drug Discovery & Development

The journey from conducting research to creating a market-ready pharma product is long and expensive, which is often because of clinical trial failures. It’s equally arduous to identify drug candidates before trials. Our team has expertise in data science in pharma R&D, leveraging which we can help to automate the screening of millions of compounds, accelerating drug discovery and manufacturing significantly.

Diagram showing how data science and machine learning improve clinical trial efficiency, patient selection, and safety monitoring.

Improved Drug Trials

Avoiding expensive, suboptimal clinical trials is something all pharma companies intend to do. By leveraging our expertise in data science in clinical trials and pharmacovigilance, we help you attain the right patient mix, predict potential side effects, and analyze historical data. Additionally, our team uses machine learning to better the trial and approval phases, fostering faster and more efficient drug development, while ensuring continuous safety monitoring.

Diagram of AI and data science solutions for optimizing life sciences R&D operations and pharma supply chain management.

Operational Optimization of R&D

We optimize life sciences R&D operations and the pharma supply chain through cutting-edge AI and data science solutions. Our expertise spans automating data analysis, streamlining drug discovery processes, and enhancing predictive modeling. With our solutions, our clients are empowered to make their R&D endeavors more efficient, innovate faster, and optimize their pharma supply chain to achieve better management of resources and their distribution.

Visual representation of big data technologies used for creating and refining personalized medication plans through medical records and genomic data.

Personalized Medication

Our proficiency in big data technologies enables us to process huge amounts of data from different sources and create personalized medication plans. When merged with medical records, medical sensor data, and genomic sequencing, these technologies facilitate the creation of precise treatment plans. Analyzing the treatment progress continuously refines these plans further, enabling pharma experts to adjust the dosing as required for improved outcomes.

Why Choose aQb Solutions?

ISO 27001 Certified
100% Reliability
Great Value, Excellent RoI, Competitive Cost
AI Workflow

Reviews

  • 5 star rated web application development company
  • Rated as top web developer in the USA by Clutch
  • Top software development company on Good Firms
  • Tor rated web and mobile app development company by Techreviewer

Partnerships & Certifications

  • Claris Filemaker development partner
  • NASSCOM Partner
  • ISO 27001:2013 certified enterprise app development company
  • Amazon Web Services Select Consulting Partner

Have requirements for AI and data science in the pharmaceutical industry?

Count on the experts. Fill up this form.

Trust the experts. Fill up this form.

No more prolonged waiting times to get a response to your queries. We give you a call within 8 hours of your request. We kick-start your project without any unnecessary delays.

Looking forward to hearing from you!